Nucleus
Barry Per-CPU Scheduler bb0cb77 (3 years, 2 months ago)
diff --git a/kernel/cpu.c b/kernel/cpu.c
new file mode 100644
index 0000000..be56047
--- /dev/null
+++ b/kernel/cpu.c
@@ -0,0 +1,154 @@
+/*
+ * This file implements the CPU setup and control functions, in particular the
+ * IPI messaging system. Each CPU has a message queue (IPIQ) which can be
+ * written by other CPUs. Each message describes a function that shoudl be run
+ * on the target CPU. When signalled via an IPI, a CPU will check it's queue for
+ * work and execute anything outstanding. Sending a message to an IPIQ will
+ * wait for the IPI to be received. If the message is synchronous (IPIQ_SYNC)
+ * then the call will also wait for the function to return on the target. If
+ * the message is asynchronous (IPIQ_ASYNC) then it will return immediately and
+ * the call may be completed at any time, with the target performing any
+ * necessary clean-up.
+ */
+
+#include <nucleus/cpu.h>
+#include <nucleus/memory.h>
+#include <nucleus/task.h>
+#include "desc.h"
+
+/* Structure for a IPI Message Queue */
+struct IPIQueue {
+ struct IPIMessage *msg[32];
+ uint32_t slots;
+ int working;
+};
+
+/* Structure for an IPI Message */
+struct IPIMessage {
+ enum IPIQFlag flags;
+ ipiq_func_t func;
+ void *arg;
+};
+
+void send_ipi(cpu_t target, uint8_t num);
+
+Processor __seg_gs *const cpu = 0;
+Processor *cpus[MAX_CPUS];
+
+/* Per-CPU setup */
+void
+cpu_load(void)
+{
+ /* Initialise SSE */
+ asm volatile(
+ "mov %cr0, %eax;"
+ "andl $0xfffffffb, %eax;"
+ "orl $0x2, %eax;"
+ "mov %eax, %cr0;"
+ "mov %cr4, %eax;"
+ "orl $0x600, %eax;"
+ "mov %eax, %cr4;"
+ );
+
+ /* Initialise CR4.PGE */
+ asm volatile(
+ "mov %cr4, %eax;"
+ "orl $0x10, %eax;"
+ "mov %eax, %cr4;"
+ );
+
+ /* Tables */
+ cpu_load_idt();
+ cpu_load_gdt();
+
+ /* Processor structure */
+ cpu_t id = CPUID;
+ cpus[id] = kmalloc(sizeof(Processor));
+ set_gs_base((uintptr_t) cpus[id]);
+ cpu->self = cpus[id];
+ cpu->id = id;
+ cpu->scheduler = new(&schedulerType);
+ cpu->ipiq = kmalloc(sizeof(struct IPIQueue));
+
+ asm volatile("sti");
+}
+
+/* IPI Queue handler */
+void
+ipiq_handler(struct InterruptFrame *frame)
+{
+ struct IPIMessage *msg;
+ struct IPIQueue *queue = cpu->ipiq;
+
+ if (queue->working || !queue->slots)
+ return;
+
+ enter_critical_section();
+ queue->working++;
+
+ /* Dispatch all messages that are pending */
+ uint8_t slot;
+ for (slot = 0; slot < 32; slot++) {
+ msg = queue->msg[slot];
+ /* Check the bitset for used slots */
+ if (!(queue->slots & (1 << slot)))
+ continue;
+ queue->slots &= ~(1 << slot);
+ msg->func(msg->arg);
+ if (msg->flags & IPIQ_SYNC)
+ msg->flags |= IPIQ_DONE;
+ else
+ kfree(msg);
+ }
+
+ queue->working--;
+ exit_critical_section();
+}
+
+/* Request a CPU run a function */
+void
+send_ipiq(cpu_t targid, ipiq_func_t func, void *arg, enum IPIQFlag flags)
+{
+ enter_critical_section();
+ if (__builtin_expect((targid == cpu->id), 0)) {
+ func(arg);
+ goto end;
+ }
+
+ /* Construct IPI message */
+ struct IPIMessage *msg = kmalloc(sizeof(struct IPIMessage));
+ msg->func = func;
+ msg->arg = arg;
+ msg->flags = flags & ~IPIQ_DONE;
+
+ /* Find slot and send */
+ uint8_t slot;
+ struct IPIQueue *queue = cpus[targid]->ipiq;
+find_slot:
+ for (slot = 0; slot < 32; slot++) {
+ /*
+ * Search for a free slot by testing and setting each bit in the
+ * bitset until one is changed. One bit per slot minimises the
+ * contention and guarantees synchronisation when acted on
+ * atomically. Only try to set one bit at a time, then test that
+ * bit, none of the others.
+ */
+ if (!((__atomic_fetch_xor(&queue->slots, 1 << slot,
+ __ATOMIC_ACQUIRE) >> slot) & 1))
+ break;
+ }
+ if (slot == 32)
+ goto find_slot;
+ queue->msg[slot] = msg;
+ if (!queue->working)
+ send_ipi(targid, 0);
+
+ /* Wait for completion */
+ if (flags & IPIQ_SYNC) {
+ while (!(msg->flags & IPIQ_DONE));
+ kfree(msg);
+ }
+
+end:
+ exit_critical_section();
+}